LEICA 甘油浸漬物鏡

樣本所處的環境介質折射率與物鏡的浸漬介質折射率越相近越好, 甘油折射率 1.460, 80% 甘油 / 20% 水溶液, 最適合活細胞的維生環境. 溫度補償具有 37 度 或 21 度 兩款供選用.
 
甘油物鏡可以提供更長的工作距離 280 nm. 一般高倍高NA油鏡 ( 100x/1.40 ) 僅 100 nm. 所以, 甘油物鏡可以觀察更厚的樣品.

LEICA HC PL APO 93x/1.30 甘油鏡, 你一定有擁有此物鏡, 超解析與深度成像的超級物鏡, 適用於超解析 STED, 共軛焦, 厚樣本高解析成像.




正確使用浸漬油或水, 是顯微鏡 1). 提升光學解析 與  2). 正確影像擷取 很重要的一環.



Figure 1: Left: When light passes two media with different refractive indexes (RI) (for example, through glass to air) it refracts. Any light rays which are refracted into the air, reflected by the cover glass or actually blocked by the metal housing of the objective front lens do not contribute to the image formation. Right: An immersion liquid with a refractive index matched to the refractive index of the cover glass and the medium the specimen is mounted, decreases the amount of refraction and reflection of light from the specimen

Immersion Medium

RI

Air

1.00

Water

1.33

Glycerol (100%)

1.47

Cedar Oil

1.51

Leica Immersion Oil (standard and type “F”)

1.51

 

 

Glass

RI

Glass (borosilicate or “Parex”)

1.47

Glass (crown or soda-lime)

1.51

 

 

Mounting Medium

RI

Cell Culture Medium

1.31 to 1.33

Fluoromount-GTM

1.4

ProLong®/ProLong® Gold

1.46

VECTASHIELD®

1.44

VECTASHIELD® Hard+SetTM

1.46

Mowiol®

1.41 – 1.49




Figure 2: The refractive indexes of all optical elements between the specimen and the front lens of the objective have a major influence on the image quality. Ideally, they should match to each other as closely as possible like in this example of a specimen mounted in a glycerol based mounting medium.






Figure 8: Glycerol objectives are a good choice for samples mounted in media with a refractive index close to that of a glycerol/water mixture (e.g. VECTASHIELD® Hard+SetTM).Glycerol is an additional immersion medium. A lot of fixed samples are mounted in Mowiol, Vectashield or similar mixtures based on glycerol (s. Table 1). These media have refractive indexes close to that of a 80/20 glycerol/water mixture (RI=1.45). Glycerol objectives (s. Figure 8) are the best choice for samples mounted in such media.


Obj. HC PL APO 10x/0.40 CS 
Obj. HC PL APO 10x/0.40 IMM CS 
Obj. HC PL APO 20x/0.70 IMM CORR CS 
Obj. HCX PL APO 20x/0.70 IMM CORR Lbd BL 
Obj. HC PL APO 20x/0.70 CS 
Obj. HC PL APO 20x/0.70 IMM CORR CS 
Obj. HC PL APO 40x/0.85 CORR CS 
Obj. HC PL APO 40x/1.25 GLYC motCORR CS2 
Obj. HCX PL APO 40x/1.30 OIL CS 
Obj. HCX PL APO 40x/1.30 OIL PH3 CS 
Obj. HCX PL APO 40x/1.10 W CORR CS 
Obj. HC PL APO 63x/1.30 GLYC CORR 
Obj. HC PL APO 63x/1.30 GLYC CORR CS2 
Obj. HCX PL APO 63x/1.20 W CORR CS 
Obj. HCX PL APO 63x/1.20 W CORR Lbd Bl 
Obj. HCX PL APO 63x/1.30 GLYC CORR 37°C 
Obj. HCX PL APO 63x/1.40-0.60 OIL Lbd Bl 
Obj. HCX PL APO 63x/1.20 W CORR CS 
Obj. HCX PL APO 63x/1.20 W CORR lbd red 
Obj. HCX PL APO 63x/1.40-0.60 OILCS
Obj.HCX PLAPO 63x/1.30 GLYC CORR CS 21°C 
Obj. HC PL APO 93x/1.30 GLYC motC STED W




Cleared kidney sample revealing the podocyte cell layer; detailed view podocytes by STED and electron microscopy (EM). Cleared kidney sample courtesy of David Unnersjö-Jess, KTH, Stockholm, Sweden.
Scanning EM image of kidney podocytes courtesy: Center for Microscopy and Image Analysis, Univ. of Zurich, Dr. Urs Ziegler.